Breaking News

Monday, February 22, 2016

Grafting Budding



Grafting dan Budding merupakan metode perbanyakan vegetatif buatan. Grafting/penyambungan adalah seni menyambungkan 2 jaringan tanaman hidup sedemikian rupa sehingga keduanya bergabung dan tumbuh serta berkembang sebagai satu tanaman gabungan. Teknik apapun yang memenuhi kriteria ini dapat digolongkan sebagai metode grafting. Sedangkan budding adalah salah satu bentuk dari grafting, dengan ukuran batang atas tereduksi menjadi hanya terdiri atas satu mata tunas (Hartmann et al, 1997). Tanaman sebelah atas disebut entris atau batang atas (scion), sedangkan tanaman batang bawah disebut understam atau batang bawah (rootstock) (Ashari, 1995).
             Batang atas berupa potongan pucuk tanaman yang terdiri atas beberapa tunas dorman yang akan berkembang menjadi tajuk, sedang batang bawah akan berkembang menjadi sistem perakaran (Hartmann et al, 1997). Perbanyakan tanaman dengan cara grafting merupakan teknik perbanyakan yang mahal karena memerlukan banyak tenaga terlatih dan waktu. Teknik ini dipilih dengan pertimbangan untuk memperbanyak tanaman yang sukar/tidak dapat diperbanyak dengan cara stek, perundukan, pemisahan, atau dengan cangkok. 
           Menurut Ashari (1995), banyak jenis tanaman buah-buahan yangsukar/tidak dapat diperbanyak dengan cara-cara tersebut, tetapi mudah dilakukan penyambungan, misalnya pada manggis, mangga, belimbing, jeruk dan durian. Alasan lain untuk melakukan grafting adalah: memperoleh keuntungan dari batang bawah tertentu, seperti perakaran kuat, toleran terhadap lingkungan tertentu, mengubah kultivar dari tanaman yang telah berproduksi, yang disebut top working, mempercepat kematangan reproduktif dan produksi buah lebih awal, mempercepat pertumbuhan tanaman dan mengurangi waktu produksi, mendapatkan bentuk pertumbuhan tanaman khusus memperbaiki kerusakan pada tanaman (Hartmann et al, 1997). 
           Aplikasi grafting juga dapatdilakukan untuk membuat satu tanaman dengan jenis yang berbeda-beda, untuk mengatasi masalah polinasi, dalam kasus self-incompability atau tanaman berumah dua (Ashari,1995).
Proses Pertautan Sambungan
           Proses pertauatan sambungan diawali dengan terbentuknya lapisan nekrotik pada permukaan sambungan yang membantu menyatukan jaringan sambungan terutama di dekat berkas vaskular. Pemulihan luka dilakukan oleh sel meristematik yang terbentuk antara jaringan yang tidak terluka dengan lapisan nekrotik. Lapisan nekrotik ini kemudian menghilang dan digantikan oleh kalus yang dihasilkan oleh sel-sel parenkim (Hartmann et al, 1997). 
            Menurut Ashari (1995) sel-sel parenkim batang atas dan batang bawah masing-masing mengadakan kontak langsung, saling menyatu dan membaur. Sel parenkim tertentu mengadakan diferensiasi membentuk kambium sebagai kelanjutan dari kambium batang atas dan batang bawah yang lama. Pada akhirnya terbentuk jaringan/pembuluh dari kambium yang baru sehingga proses translokasi hara dari batang bawah ke batang atas dan sebaliknya dapat berlangsung kembali. Agar proses pertautan tersebut dapat berlanjut, sel atau jaringan meristem antara daerah potongan harus terjadi kontak untuk saling menjalin secara sempurna. 
            Ashari (1995) mengemukakan bahwa hal ini hanya mungkin jika kedua jenis tanaman cocok (kompatibel) dan irisan luka rata, serta pengikatan sambungan tidak terlalu lemah dan tidak terlalu kuat, sehingga tidak terjadi kerusakan jaringan. Dalam melakukan grafting atau budding, perlu diperhatikan polaritas batang atas dan batang bawah. Untuk batang atas bagian dasar entris atau mata tunas harus disambungkan dengan bagian atas batang bawah. Untuk okulasi (budding), mata tunas harus menghadap ke atas. Jika posisi ini terbalik, sambungan tidak akan berhasil baik karena fungsi xylem sebagai pengantar hara dari tanah meupun floem sebagai pengantar asimilat dari daun akan terbalik arahnya (Ashari, 1995). 
            Hal lain yang perlu diperhatikan dalam penyambungan adalah kompabilitas. Pengertian kompoabilitas adalah kemampuan dua jenis tanaman yang disambung untuk menjadi satu tanaman baru. Bahan tanaman yang disambung akan menghasilkan persentase kompabilitas tinggi jika masih dalam satu spesies atau satu klon, atau bahkan satu famili, tergantung jenis tanaman masing-masing (Ashari, 1995). Inkompatibilitas antar jenis tanaman yang disambung dapat dilihat dari kriteria sebagai berikut menurut Hartmann et al (1997) : Tingkat keberhasilan sambungan rendah pada tanaman yang sudah berhasil tumbuh, terlihat daunnya menguning, rontok, dan mati tunas, mati muda, pada bibit sambungan, terdapat perbedaan laju tumbuh antara batang bawah dengan batang atas, terjadinya pertumbuhan berlebihan baik batang atas maupun batang bawah 
Pengaruh Batang Bawah Terhadap Batang Atas 
            Menurut Ashari (1995) pengaruh batang bawah terhadap batang atas antara lain, mengontrol kecepatan tumbuh batang atas dan bentuk tajuknya, mengontrol pembungaan, jumlah tunas dan hasil batang atas, mengontrol ukuran buah, kualitas dan kemasakan buah, dan resistensi terhadap hama dan penyakit tanaman. 
           Pengaruh batang atas terhadap batang bawah juga sangat nyata. Namun pada umumnya efek tersebut timbal balik sebagaimana pengaruh batang bawah terhadap batang atas. Perbanyakan Batang bawah ada yang berasal dari semai generatif dan dari tan vegetatif (klon). Batang bawah asal biji (semai) lebih menguntungkan dalam jumlah, umumnya tidak membawa virus dari pohon induknya dan sistem perakarannya bagus. Kelemahannya yaitu secara genetik tidak seragam. Variasi genetik ini dapat mempengaruhi penampilan tanaman batang atas setelah ditanam. Oleh karena itu perlu dilakukan seleksi secermat mungkin terhadap batang bawah asal biji (Ashari, 1995). Hartmann et al (1997) menyatakan bahwa batang bawah tanaman jeruk diproduksi dari biji apomiksis dan secara genetik seragam. Metode perbanyakan batang bawak ini lebih efisien dan hemat. Metode Penyambungan Menurut Ashari (1995) terdapat 2 metode penyambungan, yaitu sambung tunas dan sambung mata tunas. 
1. Sambung Tunas/Grafting 
            Agar persentase jadi dapat memuaskan, ada beberapa hal yang perlu diperhatikan:
a. Batang atas dan batang bawah harus kompatibel
b. Jaringan kambium kedua tanaman harus bersinggungan
c. Dilakukan saat kedua tanaman berada pada kondisi fisiologis yang tepat
d. Pekerjaan segera dilakukan sesudah entris diambil dari pohon induk
e. Tunas yang tumbuh pada batang bawah (wiwilan) harus dibuang setelah penyambungan selesai agar tidak menyaingi pertumbuhan tunas batang atas. 
            Metode yang dikembangkan adalah sambung lidah (tongue grafting), sambung samping (side grafting), sambung celah (cleft grafting), sambung susu (approach grafting), dan sambung tunjang (inarching). 
2. Sambung Mata Tunas/Okulasi (Budding) 
            Masalah yang sering timbul dalam pelaksanaan teknik ini menurut Ashari (1995) adalah sukarnya kulit kayu batang bawah dibuka, terutama pada saat tanaman dalam kondisi pertumbuhan aktif, yakni pada saat berpupus atau daun-daunnya belum menua. Hal ini berkaitan dengan kondisi fisiologis tanaman. Sebaiknya okulasi dilakukan saat tanaman dalam kondisi dorman. Budding dapat menghasilkan sambungan yang lebih kuat, terutama pada tahun-tahun pertama daripada metode grafting lain karena mata tunas tidak mudah bergeser. Budding juga lebih ekonomis menggunakan bahan perbanyakkan, tiap mata tunas dapat menjadi satu tanaman baru (Hartmann et al, 1997). 
            Metode budding yang sering digunakan antara lain okulasi sisip (chip budding), okulasi tempel dan sambung T (T-budding). Pemilihan metode tergantung pada beberapa pertimbangan, yaitu jenis tanaman, kondisi batang atas dan batang bawah, ketersediaan bahan, tujuan propagasi, peralatan serta keahlian pekerja (Ashari, 1995).

Read more ...

Toksisitas Gas Terhadap Tanaman



Pencemaran udara atau sering kita dengar dengan istilah polusi udara diartikan sebagai adanya bahan-bahan atau zat-zat asing di dalam udara yang menyebabkan perubahan susunan atau komposisi udara dari keadaan normalnya (Wardhana,1999). Pencemaran udara disebabkan oleh berbagai macam zat kimia, baik berdampak langsung maupun tidak langsung yang semakin lama akan semakin mengganggu kehidupan manusia, hewan dan tumbuhan.
Pencemaran udara ini dapat berbentuk padatan, seperti partikel kecil yang disebabkan oleh debu yang berterbangan akibat tiupan angin, asap dari industri dan kendaraan bermotor, dan proses pembusukan sampah organik. Selain berbentuk padatan pencemaran dapat berupa cairan dan gelombang. Pencemaran berupa cairan seperti air hujan maupun bahan kimia yang cukup dominan (bentuk gas seperti Ozon, CO2), sedangkan pencemaran udara yang berbentuk gelombang seperti kebisingan akibat suara yang dihasilkan oleh kendaraan bermotor.
Pencemaran udara yang melampaui batas kewajaran akan menimbulkan dampak terhadap makhluk hidup yang hidup di atas bumi ini. Oleh sebab itu, maka perlu kita fahami dampak apa saja yang dapat ditimbulkan oleh pencemaran udara khususnya terhadap tumbuhan.
Berdasarkan Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup (KEPMEN KLH) No. Kep.02/Men-KLH/1988, yang dimaksudkan dengan pencemaran udara adalah masuk atau dimasukkannya mahluk hidup, zat, energi dan atau komponen lain ke udara dan atau berubahnya tatanan udara oleh kegiatan manusia atau proses alam sehingga kualitas udara turun hingga ke tingkat tertentu yang menyebabkan udara menjadi kurang atau tidak dapat berfungsi lagi sesuai dengan peruntukkannya.

Sumber Toksin
Sumber utama adalah berasal dari transportasi terutama kendaraan bermotor yang menggunakan bahan bakar yang mengandung zat pencemar, 60% dari pencemar yang dihasilkan terdiri dari karbon monoksida dan sekitar 15% terdiri dari hidrokarbon (Fardiaz, 1992).
Sumber-sumber pencemar lainnya adalah pembakaran, proses industri, pembuangan limbah dan lain-lain. Pada beberapa daerah perkotaan, kendaraan bermotor menghasilkan 85% dari seluruh pencemaran udara yang terjadi. Kendaraan bermotor ini merupakan pencemar bergerak yang menghasilkan pencemar CO, hidrokarbon yang tidak terbakar sempurna, NOx, SOx dan partikel. Pencemar udara yang lazim dijumpai dalam jumlah yang dapat diamati pada berbagai tempat khususnya di kota-kota besar.
 Menurut Hasketh dan Ahmad dalam Purnomohadi (1995) antara lain adalah:
(1) Nitrogen Oksida (NOx) yaitu senyawa jenis gas yang terdapat di udara bebas, sebagian besar berupa gas nitrit oksida (NO) dan nitrogen oksida (NO2) serta berbagai jenis oksida dalam jumlah yang lebih sedikit. Gas NO tidak berwarna dan tidak berbau, sedangkan gas NO2 berwarna coklat kemerahan, berbau tidak sedap dan cukup menyengat. Berbagai jenis NOx dapat dihasilkan dari proses pembakaran Bahan Bakar Minyak (BBM) dan bahan bakar (BB) fosil lainnya pada suhu tinggi, yang dibuang ke lingkungan melalui cerobong asap pabrik-pabrik di kawasan industri. Gas NOx inipun berbahaya bagi kesehatan dan ternak, dan di kawasan pertanian dapat merusak hasil panen.
(2) Belerang Oksida (SOx), khusunya belerang dioksida (SO2) dan belerang tri-oksida (SO3) adalah senyawa gas berbau tak sedap, yang banyak dijumpai di kawasan industri yang menggunakan batubara dan korkas sebagai BB dan sumber energi utamanya. Belerang oksida juga merupakan salah bentuk gas hasi kegiatan vulkanik, erupsi gunung merapi, sumber gas belerang alami (sulfatar), sumber air panas dan uap panas alami (fumarol). Oksida-oksida ini merupakan penyebab utama karat karena ia sangat reaktif terhadap berbagai jenis logam (membentuk senyawa logam sulfida). Ia juga mengganggu kesehatan, khususnya indra penglihatan dan selaput lendir sekitar saluran pernapasan (hidung, kerongkongan dan lambung). Di kawasan pertanian, gas-gas belerang oksida ini dapat merusak hasil panen.

Respon Tanaman
Pada kebanyakan pencemaran udara, secara sendiri-sendiri atau kombinasi menyebabkan kerusakan dan perubahan fisiologi tanaman yang kemudian diekspresikan dalam gangguan pertumbuhan (Kozlowski, 1991). Pencemaran menyebabkan perubahan pada tingkatan biokimia sel kemudian diikuti oleh peubahan fisiologi pada tingkat individu hingga tingkat komunitas tanaman. Dijelaskan pula bahwa pencemaran udara terhadap tanaman dapat mempengaruhi:
1. Pertumbuhan. Sangat banyak literatur yang menunjukkan bahwa berbagai pencemar udara dan air secara endiri-sendiri dan dalam bentuk kombinai mengurangi pertumbuhan kambium, akar dan bagian reproduktif.
2. Pertumbuhan akar. Baik pencemar gas maupun partikel mengurangi bibit, jumlah pengurangan bervariasi tergantung kepada konsentrasi dan waktu pemaparan. Beberapa studi menunjukkan bahwa pertumbuhan tinggi dari pohon tua dapat berkurang. Sebagai contoh, terjadinya penurunan pertumbuhan tinggi pada beberapa tumbuhan yang disebabkan oleh pencemar SO2, NO2 dan partikel.
3. Pertumbuhan daun. Luasan daun dari suatu pohon dan tegakkan pohon yang terekspose ke pencemar udara dapat berkurang karena pembentukan dan kecepatan absisi daun. Sebagai contoh SO2 mengurangi berat dan luas daun.
 Sebagai gambaran jumlah polutan yang berbentuk gas oleh Walker et al (1996), menyebut angka-angka sebagai berikut :
Jumlah Pollutan Gas yang Dilepas Setiap Tahun Secara
Global (Ton)* Gas

Anthropogenic Sources

Natural Sources**
CO2
6 000 000 000
100 000 000 000
SOx
100 000 000
50 000 000
NOx
68 000 000
20 000 000
CFCs
1 100 000
0
Keterangan :
* Data dari Tolba (1992) dan UNEP (1993)
** Data dari Natural Resources masih diragukan
Beberapa data yang dikemukakan pada akhir 60-an oleh Foy :
1. Kerugian dibidang pertanian sebesar US $ 500 juta setiap tahunnya.
2. Sepanjang jalan bebas hambatan beberapa meter kiri-kanan jalan raya tumbuhan tidak dapat hidup di California (Bregman and Lenoman, 1966).
3. Smog dapat merusak tanaman anggur (Vitis spp.) yang menyebabkan penurunan produksi sampai 25% dibandingkan dengan tanaman anggur yang tidak terkena pencemaran.
Polusi Sulfur Dioksida dapat mematikan tanaman kapas (Gossypium spp.) sedangkan gamdum (Priticium aestivum) sangat peka berbeda terhadap pencemaran Ozon dan Sulfur Dioksida (Foy dalam Rumawas, 1971).
         Di Indonesia, sumber pencemar udara masih terus di teliti. Akan tetapi, perkiraan prosentasi komponen pencemar udara dari transportasi dapat dilihat pada Tabel (Wardhana, 1999).

 Perkiraan Prosentase Komponen Pencemar Udara dari Sumber Pencemar Transportasi di Indonesia.

Komponen Pencemar

Prosentase (%)

CO

70,50
NOx
8,89
SOx
0,88
HC
18,34
Partikel
1,33

Total

100


A.  Kerusakan Makrokopis Daun
Beberapa polutan sekunder diketahui bersifat sangat merusak tanaman. Percobaan dengan cara pengasapan tanam-tanaman dengan NO2 menunjukkan terjadinya bintik-bintik pada daun jika digunakan konsentrasi 1.0 ppm, sedangkan dengan konsrntrasi yang lebih tinggi (3.5 ppm atau lebih) terjadi nekrosis atau kerusakan pada tenunan daun.
Pencemaran oleh sulfur oksida terutama disebabkan 2 komponen gas yang tidak berwarna, yaitu sulfur dioksida (SO2) dan sulfur trioksida (SO3) , dan keduanya disebut sebagai belerang oksida (SOx). Sama halnya dengan gas yang lain, kerusakan tanaman oleh SOx dipengaruhi oleh dua factor yaitu konsentrasi SOx dan waktu kontak. Kerusakan tiba-tiba (akut ) terjadi jika kontak dengan SOx pada konsentrasi tinggi terjadi dalam waktu tidak lama, dengan gejala beberapa bagian daun menjadi kering dan mati dan biasanya warnanya memucat. Kontak dengan SOx pada konsentrasi rendah dalam waktu lama menyebabkan kerusakan kronis, ditandai dengan menguningnya warna daun karena terhambatnya mekanisme pembentukan klorofil.

B.  Kerusakan Anatomi Daun
Pencemar debu di udara dapat menutupi mulut daun dan hal ini akan membatasi proses transpirasi seperti yang dikemukakan oleh Fakuara (1987) dalam Zubayr (1994). Sedangkan bahan kimia yang berupa gas , sebagai contoh SO2 akan masuk melalui mulut daun kemudian mempengaruhi komposisi cairan sel, dan sel menjadi rusak dan mati.
Pada tumbuhan berdaun lebar, baik SO2 maupun HF menyebabkan kolopsnya selsel bunga karang, diikuti oleh stomata permukaan bawah yang berhubungan dengan epidermis kemudian diikuti oleh kerusakan kloroplast dan merusak jaringan palisade. Jaringan-jaringan vaskular rusak kemudian (Ormond, 1978) Studi ultrastruktur mengenai pengaruh dari fumigasi SO2 terhadap tanaman telah dilakukan dan diperlihatkan bahwa pembengkakan (swelling) dari ruangan dalam tilakoid merupakan suatu dari pengaruh utama SO2 terhadap tanaman. Awalnya pembengkakan ini merupakan fenomena reversibel meskipun waktunya tergantung pada dosis. Beberapa pembengkakan menjadi indikasi adanya kekacauan ionis dan pengasamanan yang terlalu cepat.
Suratin (1991) mengemukakan, berdasarkan hasil penelitiannya diketahui
bahwa kerusakan daun kebanyakan terjadi pada bagian mesofil. Menurutnya terdapat kecendrungan antara kerusakan daun tersebut dengan jumlah kendaraan karena melepaskan gas SOx ,NOx dan partikel. Daun menjadi bagian yang paling menderita, hal ini menjadi karena sebagian besar bahan-bahan pencemaran udara mempengaruhi tanaman melalui daun, yaitu masuk melalui stomata dengan proses difusi molekuler terutama bahan pencemar yang berupa gas.

C.  Kerusakan Khlorofil
Penghambatan terhadap fotosintesis seringkali dipertimbangkan sebagai satu pengaruh utama SO2 terhadap tanaman dan kloroplast, karena kloroplast di anggap sebagai tempat utama dari banyak gangguan yang disebabkan oleh SO2 atau produknya dalam bentuk larutan. Stroma kloroplast umumnya mempunyai pH yang lebih besar dari 7 (mendekati 9 pada cahaya terang) dan dalam kondisi ini membentuk ion sulfit dengan mengorbankan bisulfit ketika terjadi ionis sulfur dalam larutan. Sebagai konsekuensinya pengaruh sulfit sering dipertimbangkan sebagai pemikir kegiatan belerang dioksida dalam kloroplas tetapi jika pH rendah senyawa sulfur akan masuk lebih mudah sebagai larutan belerang dioksida.
Pengaruh SO2 terhadap pigmen fotosintesis sangat besar. Kerusakan klorofil terjadi pada lichenes setelah diberi pemaparan dosis SO2 5 ppm selama 24 jam. Pada konsentrasi tinggi ini, molekul klorofil terdegradasi menjadi phaeophitin dan Mg2+. Pada proses ini molekul Mg2+ dalam molekul kolrofil diganti oleh dua atom hydrogen yang berakibat perubahannya kerakteristik spektrum cahaya dari molekul klorofil. Oleh karena itu, kandungan klorofil sering dijadikan indikator terhadap pencemaran udara (khususnya SO2). Pada lichenes yang sensitif, pemaparan kronis dengan konsentrasi SO2 rendah (0.01 ppm) menyebabkan hilangnya klorofil.
Kerusakan pada daun oleh pencemaran udara dapat dihambat diantaranya dengan adanya lapisan lilin daun. Lilin pada permukaan daun secara fisiologis untuk menahan kehilangan uap air, mengontrol pertukaran gas, mengurangi pelepasan nutrien dan metabolit, dan bertindak sebagai bahan pencemar yang reaktif seperti SO2, NO2 dan O3.
Lilin daun merupakan bagian daun yang penting yang dapat dipercepat rusaknya oleh angin, abrasi, gesekan dan interaksi kimia dengan polutan. Jadi kerusakan lilin daun menyebabkan daun menjadi sensitif terhadap pencemar. Morfologi maupun distribusi lilin pada daun dipengaruhi oleh pencemaran udara. Kerusakan pada permukaan daun (khususnya daun lebar) dapat terjadi oleh hujan asam dengan pH 3 – 3,5 dan konsentrasi sulfat 500 mol/liter, sementara nitrat tidak memiliki pengaruh yang nyata (Cape, 1993).

KESIMPULAN

Polusi udara dapat berbentuk gas, cairan, dan padatan. Reaksi antara gas dan cairan maupun larutan dapat dibawa angin, kemudian terjadi presipitasi yang berakibat terjadinya hujan, embun, fog, smog yang kesemuanya dapat merusak tanaman maupun lingkungan. 

Sumber pencemaran dapat berasal dari gejala alam seperti letusan gunung, emisi industri dan buangan gas dari kendaraan bermotor yang dapat mencemari udara. Hujan asam menyebabkan menurunnya pH perairan dan mengendapnya zat asam di tanah, yang menyebabkan kerusakan bagi tanaman.

Pada kebanyakan pencemaran udara, secara sendiri-sendiri atau kombinasi menyebabkan kerusakan dan perubahan fisiologi tanaman yang kemudian diekspresikan dalam gangguan pertumbuhan. Pencemaran menyebabkan perubahan pada tingkatan biokimia sel kemudian diikuti oleh peubahan fisiologi pada tingkat individu hingga tingkat komunitas tanaman. 
Pencemaran udara terhadap tanaman dapat mempengaruhi pertumbuhan tanaman secara keseluruhan, pertumbuhan akar, dan pertumbuhan daun. Gejala yang sering tampak pada tanaman akibat pencemaran udara adalah kerusakan makrokopis daun, kerusakan khlorofil, dan kerusakan anatomi daun.

DAFTAR PUSTAKA
Batara, E.M.S. 2005. Pencemaran Udara, Respon Tanaman dan Pengaruhnya Pada Manusia. e-USU Repository ©2005 Universitas Sumatera Utara . Medan.
Rahmawaty. 2002. Dampak Pencemaran Udara Terhadap Tumbuhan. digitized by USU digital library .
Read more ...

Thursday, January 17, 2013

Anatomi bunga


Bunga merupakan alat perkembangbiakan pada tumbuhan Angiospermae. Berbagai pendapat mengemukakan bahwa organ-organ bunga berasal langsung dari daun lebar. Akan tetapi dalam pengertian umum yang diterima pada saat ini bahwa daun dan batang merupakan unit tunggal yang diistilahkan sebagai pucuk dan dapat kita lihat perkembangan dari bunga yang paralel dengan perkembangan vegetative bukanlah berasal dari keduanya.
Struktur dan Bagian Bunga
1. Struktur Bunga
Bunga terdiri dari sejumlah bagian steril dan bagian reproduktif atau fertil yang melekat pada sumbu, yakni dasar bunga atau reseptakulum. Bagian sumbu merupakan ruas batang yang di akhiri dengan tangkai bunga atau pedisel. Bagian steril dari bunga terdiri atas sejumlah helai daun kelopak atau sepala dan sejumlah helai daun mahkota atau petala. Keseluruhan sepala dalam bunga disebut kaliks, dan keseluruhan petala disebut korola. Kaliks dan korola bersama-sama disebut perhiasan bunga atau periantium. Jika periantium tidak terbagi menjadi kaliks dan korola, maka setiap helainya disebut tepala.
Bagian reproduktif adalah benang sari atau stamen (mikrosporofil) dan daun buah atau karpela (megasporofil). Keseluruhan stamen disebut androesium dan keseluruhan karpela disebut ginoesium.

2. Bagian Bunga
a. Bagian Steril
Terdiri dari sepala dan petala. Stuktur sepala dan petala seperti struktur daun. Apabila bagian dalamnya berwarna atau ber hijau, sepala mirip helaian daun, sedangkan apabila berwarna selain hijau, jelas berbeda dengan petala. Dinding antiklin pada kebanyakan bunga terlipat atau berombak. Dinding luar sel epidermis biasanya mempunyai papilla yang membuat petala tampak mengkilap. Banyak papilla terdapat pada epidermis abaksial dan tidak berkembang pada dasar petala. Stomata,apabila ada, jarang dan tidak berfungsi. Trikoma sering kali ada pada sepala dan petala. Seringkali ruang antar sel di tutupi oleh kutikula. Ketebalan kutikula beragam pada tumbuhan yang berbeda.
Bermacam pigmen ditemukan dalam sel epidermis sepala dan petala. Petala, pada umumnya mempunyai struktur dalam yang mirip dengan helaian daun, yaitu tulang daun dan mesofilnya berkembang lebih baik, memiliki jaringan palisade, epidermis tidak mempunyai papilla, dan memiliki banyak stomata. Sepala dan petala dapat berlekatan membentuk suatu tutup atau operculum yang dapat terbuka sekelilingnya. Sepala dan petala dapat membentuk dua operkulum yang tepisah, atau mungkin berlekatan, dan membentuk operkulum biasa.
b. Bagian Reproduktif
1. Stamen (Benang sari)
Stamen atau benang sari terdiri atas filamen atau tangkai sari dan anthera (kotak sari) di bagian distalnya. Anthera terdiri atas dua ruangan (lobus) yang menempel dan bersambungan dengan lanjutan filamen. Setiap lobus berisi serbuk sari. Epidermis filamen mempunyai kutikula dan pada spesies tertentu mempunyai trikoma. Filamen terdiri atas parenkim dengan vakuola yang berkembang baik dan ruang antarsel kecil. Sering kali dalam cairan sel terdapat pigmen. Ukuran dan bentuk luar stamen Angiospermae sangat besar. Anther umumnya berisi 4 kantong sari (mikrosporangia) yang berpasangan dalam 2 lobus. Di antara kedua lobus terdapat jaringan steril, yaitu konektivum.
Pada tiap daerah terdapat sederetan pemula hipodermis yang membelah periklin membentuk dua lapisan:
Lapisan dalam pemula ini merupakan sel sporogen primer yang membelah mitosis membentuk sel induk serbuk sari atau mikrosporofit. Setiap sel induk serbuk sari membelah meiosis membentuk tetrad butir serbuk sari, yaitu 4 mikrospora haploid. Lapisan luar pemula merupakan sel parietal primer, yang dinding kantong serbuk sari dan bagian besar tapetum berkembang sebagai hasil pembelahan sel antiklin dan periklin. Tapetum membantu dalam penyaluran makanan saat perkembangan sel induk serbuk sari dan butir serbuk sari.
Tapetum dibedakan menjadi dua tipe: Tapetum kelenjar atau tapetum sekretori: apabila sel masih tetap dalam posisi aslinya, kemudian hancur, isinya diserap oleh sel induk serbuk dan butir serbuk yang berkembang. Tapetum ameboid: apabila protoplas dan sel tapetum mengadakan pemantakan di antara sel induk serbuk dan butir serbuk yang berkembang, mereka saling berlekatan membentuk tapetum peri plasmodium.Lapisan paling luar dari sel parietal disebut endotesium. Pembukaan kantong sari dilakukan oleh lapisan ini.
Mekanisme pembukaan kantong sari:
Diawali pada saat atau selama antera endotesium kehilangan air. Oleh karena isi air sel menurun/berkurang, dinding sel mati karena respirasi terhenti. Karena semua sel endotesium kehilangan air pada waktu yang hampir sama dan semua dinding luar melipat dan mengerut, endotesium mengecil sehingga antera terbuka.
2. Karpela (bakal buah)

Menurut teori telome, tumbuhan yang paling primitif seluruhnya dibangun dari sistem telome. Telome adalah bagian palinh akhir dari sumbu yang bercabang-cabang dikotomi yang menyangga sporangium (disebut telome fertil) atau tidak menyangga sporangium (disebut telome steril).
Menurut Wilson (1942), karpela seperti stamen, berkembang dari telome fertil, yaitu telome yang membawa sporangium berlekatan membentuk organ seperti daun yang membawa ovulum pada bagian tepinya.

Ada beberapa teori tentang asal usul karpela:
·         Teori gonofil oleh Melville (1961) mengatakan bahwa ovarium terdiri atas daun steril dan cabang pembawa ovulum yang biasanya epifil daun. Setiap daun bersama dengan cabang fertile dianggap sebagai suatu unit yang disebut gonofil sebagai pengganti karpela.

·         Teori/konsep sui generis, yaitu stamen dan karpela tidak homolog dengan daun. Menurut Meeuse (1966), bunga Angiospermae dapat ditafsirkan berdasarkan konsep umum yang diasumsikan bahwa ovulum lahir pada sumbu atau homolognya dan tidak pada homolog daun.

Evolusi dari ginoesium Angiospermae juga melibatkan perlekatan antara dua atau lebuih karpela bunga tunggal. Perlekatan ini terjadi dengan berbagai cara. Bagian tepi dari kapela berlekatan pada reseptakulum atau berlekatan satu dengan yang lain sepanjang bgian ventral atau lateralnya. Kasus terakhir, karpela tetap terbuka membentuk unilokula. Perlekatan bagian tepi dan karpela terjadi di tengah ovarium, dan dibentuk sejumlah lokula dan karpela yang sama banyaknya.

Carr (1961), membedakan tiga tipe ginoesium, yaitu:
·     Apokarpi: setiap karpela mempunyai stilus tunggal Pseudo-sinkarpi: ginoesiumnya merupakan karpela yang berlekatan membentuk struktur tunggal, tetapi jalur buluh serbuk sari secara fungsional seperti apokarpi.
·         Eu-sinkarpi: buluh serbuk dari semua bagian stigma dapat mencapai ovulum dari semua karpela,bahkan dalam ovarium multilokula.

Histology Karpela
Dinding ovarium terdiri atas jaringan parenkim dan pembuluh yang ditutupi oleh epidermis yang ada kutikulanya. Stigma dan stilus mempunyai struktur khusus dan sifat fisiologi yang dapat membuat butir serbuk sari berkecambah pada stigma dan buluh serbuk sari mengadakan pemantakan ke ovulum. Protoderm stigma menjadi epidermis berkelenjar dengan sel kaya protoplasma. Epidermis biasanya mempunyai papilla dan dilapisi kutikula. Pada kebanyakan tumbuhan, sel epidermis stigma berkembang menjadi rambut pendek yang banyak atau berkembang memanjang membentuk serabut yang bercabang, misalnya pada Gramineae atau tumbuhan yang penyerbukannya dibantu oleh angin.
Antara jaringan stigma dan ovarium terdapat jaringan khusus, tempat pemantakan butir serbuk sari yang berkecambah. Jaringan ini member makanan pada buluh serbuk sari untuk tumbuh selama melalui stilus ke ovarium. Jaringan ini oleh Arber (1937) disebut jaringan trasnmiting (pemindah).           
Sebagian besar Angiospermae mempunyai stilus padat dan jaringan pemindah merupakan untaian sel memanjang yang kaya sitoplasma. Sel ini menunjukkan dinding samping yang tebal dan dinding mendatar yang relatif tipis. Dinding samping tebal terdiri atas beberapa lapisan sebagai berikut:
Lapisan paling dalam tersusun atas senyawa pectin dan hemiselulosa. Di sebelah luarnya terdapat lapisan yang tampak lebih gelap, lebih tipis, dan kaya hemiselulosa. Di sebelah luarnya terdapat dinding tebal dengan tekstur yang longgar, menunjukkan cincin terpusat dari bahan serabut, relatif miskin hemiselulosa tetapi kaya pectin, serta berisi selulosa dan polisakarida nonselulosa.
Lamela tengah tebal, terutama terdiri atas senyawa pectin. Lamella tengah dan lapisan dinding paling luar berisi protein. Pada dinding terluar terdapat massa gelembung kecil. Buluh serbuk sari tumbuh melalui lapisan dinding paling luar.

Megasporogenesis
Ada sel tumbuhan yang mempunyai beberapa sel induk megaspore di dalam ovulum tunggal, tetapi biasanya hanya sebuah sel induk yang berkembang dalam tiap nukleus. Sel ini dapat dibedakan dari sel tetangganya karena ukuran sel, ukuran inti, dan kepadatan sitoplasmanya. Sel hypodermis pertama kali membelah menjadi sel parietal, bagian luar bisanya lebih kecil, dan sebuah sel di dalam yang lebih besar merupakan sel sporogen primer. Selanjutnya, sel tersebut berkembang menjadi sel induk megaspora, dan sel parietal membelah membentuk sejumlah sel sehingga sel induk megaspora ditekan ke dalam.

Gametofit jantan
Gametofit jantan masak terdiri atas tiga sel yang dihasilkan dari dua kali pembelahan mitosis yang terjadi di dalam butir serbuk sari. Pada pembelahan mitosis pertama, nuselus butir serbuk sari (mikrospora) muda mengambil tempat di dekat dinding. Pembelahan pertama menghasilkan dua sel, yaitu sel vegetatif dan sel generatif. Sel generatif muda mempunyai sebuah kalosa atau dinding selulosa. Selanjutnya, sel generatif terpisah dari dinding butir serbuk sari dan kehilangan dinding kalosanya, dikelilingi oleh sitoplasma sel vegetatif, kemudian menjadi oval atau berbentuk lensa.
Pada tahap ini, butir serbuk sari gugur dari anteradan sel generative membelah sekali untuk membentuk dua gamet jantan sebelum pembukaan antera. Lamella bagian dalam dinding buluh serbuk sari terdiri atas kalosa dan selulosa. Protoplas hanya terdapat pada bagian distal pembuluh dan terpisah dari bagian proksimal oleh pembentukan sumbat kalosa yang dibentuk dari waktu ke waktu oleh protoplas.

Gametofit betina
Megaspora yang hidup akan membesar dan mengalami tiga kali pembelahan mitosis berurutan, sehingga kantong embrio berisi gametofit betina dengan 8 inti membesar. 

Pembuahan ganda
Pada angiospermae terjadi pembuahan ganda, yaitu terjadi dua macam peleburan: peleburan gamet jantan dengan sel telur yang menghasilkan zigot yang akan tumbuh mennjadi embrio dan peleburan gamet jantan yang lain dengan inti kandung lembaga sekunder menghasilkan endosperm.

Perkembangan Anatomi Bunga
1. Pembentukan Endosperm dan Embrio
Endosperm adalah cadangan makanan untuk embrio. Embrio adalah calon tumbuhan muda. Proses pembentukan endosperm dan embrio meliputi proses fertilisasi atau pembuahan yang dapat terjadi setelah proses polinasi atau penyerbukan. Polinasi adalah peristiwa menempelnya butir serbuk sari di atas kepala putik. Polinasi tidak selalu di ikuti dengan proses fertilisasi.
Fertilisasi dapat terjadi jika: (a) butir serbuk sari dan kepala putik berasal dari jenis yang sama, dan (b) butir serbuk sari dan kepala putik sama-sama dalam keadaan masak, siap untuk fertisasi.
2. Pembuahan
Butir serbuk sari berkecambah menghasilkan buluh serbuk sari pada stigma. Di dalam buluh serbuk terdapat dua gamet jantan yang menembus stilus dan mencapai ovulum. Pada kebanyakan tumbuhan, buluh serbuk sari memantak ke dalam ovulum melalui mikropil. Pada beberapa tumbuhan buluh serbuk sari memantak melalui khalaza, dan disebut khalazogami. Sifat ini terjadi pada Casurina dan spesies dari Pistacia. Setelah masuk ke dalam ovulum , butir serbuk sari memantak ke dalam kantong embrio melalui sinergid.
Dengan adanya pemantakan buluh serbuk sari, biasanya satu dari sinergid rusak. Selanjutnya ujung buluh serbuk sari robek dan dua gamet jantan bersama dengan sel vegetatif masuk ke dalam sitoplasma kantong embrio. Satu dari gamet jantan melebur dengan sel telur. Gamet jantan yang kedua melebur dengan inti sekunder. Pembuahan seperti ini disebut fertilisasi ganda. Hasil peleburan gamet jantan dengan sel telur adalah zigot yang kemudian berkembang menjadi embrio. Hasil peleburan gamet jantan dengan inti sekunder akan membentuk endosperm.
3. Perkembangan Embrio
Setelah fertilisasi, zigot terbentuk. Selanjutnya, zigot mengalami dorman selama periode tertentu. Pada saat yang sama, vokuola besar yang terdapat dalam telur menghilang dan sitoplasma menjadi homogen. Zigot kemudian membelah setelah pembelaha inti endo.

ANATOMI BUAH
Buah adalah organ pada tumbuhan berbunga yang merupakan perkembangan lanjutan dari bakal buah (ovarium). Buah biasanya membungkus dan melindungi biji. Aneka rupa dan bentuk buah tidak terlepas kaitannya dengan fungsi utama buah, yakni sebagai pemencar biji tumbuhan.
Perkembangan Buah
Buah adalah pertumbuhan sempurna dari bakal buah (ovarium). Setiap bakal buah berisi satu atau lebih bakal biji (ovulum), yang masing-masing mengandung sel telur. Bakal biji itu dibuahi melalui suatu proses yang diawali oleh peristiwa penyerbukan, yakni berpindahnya serbuk sari dari kepala sari ke kepala putik. Setelah serbuk sari melekat di kepala putik, serbuk sari berkecambah dan isinya tumbuh menjadi buluh serbuk sari yang berisi sperma. Buluh ini terus tumbuh menembus tangkai putik menuju bakal biji, di mana terjadi persatuan antara sperma yang berasal dari serbuk sari dengan sel telur yang berdiam dalam bakal biji, membentuk zigot yang bersifat diploid. Pembuahan pada tumbuhan berbunga ini melibatkan baik plasmogami, yakni persatuan protoplasma sel telur dan sperma, dan kariogami, yakni persatuan inti sel keduanya.
Setelah itu, zigot yang terbentuk mulai bertumbuh menjadi embrio (lembaga), bakal biji tumbuh menjadi biji, dan dinding bakal buah, yang disebut perikarp, tumbuh menjadi berdaging (pada buah batu atau drupa) atau membentuk lapisan pelindung yang kering dan keras (pada buah geluk atau nux). Sementara itu, kelopak bunga (sepal), mahkota (petal), benangsari (stamen) dan putik (pistil) akan gugur atau bisa jadi bertahan sebagian hingga buah menjadi. Pembentukan buah ini terus berlangsung hingga biji menjadi masak. Pada sebagian buah berbiji banyak, pertumbuhan daging buahnya umumnya sebanding dengan jumlah bakal biji yang terbuahi.
Kulit buah ada yang dua lapis dan ada yang tiga lapis. Kulit buah yang terdiri dari 2 lapis meliputi eksokarpium dan endokarpium sedang yang tiga lapis meliputi eksokarpium, mesokarpium, dan endokarpium. Endokarpium berbatasan dengan kulit biji. Eksokarpium umumnya satu lapis sel, mesokarpium terdiri dari beberapa lapis sel, sedang endokarpium dapat satu lapis atau lebih. Buah tertentu memiliki endokarpium yang terdiri dari sel batu. Daging buah yang kita makan sehari-hari sebenarnya mesokarpium.
Pada sebagian buah, khususnya buah tunggal yang berasal dari bakal buah tenggelam, kadang-kadang bagian-bagian bunga yang lain (umpamanya tabung perhiasan bunga, kelopak, mahkota, atau benangsari) bersatu dengan bakal buah dan turut berkembang membentuk buah. Jika bagian-bagian itu merupakan bagian utama dari buah, maka buah itu lalu disebut buah semu.
Baik buah sejati (yang merupakan perkembangan dari bakal buah) maupun buah semu, dapat dibedakan atas tiga tipe dasar buah, yakni:
  • Buah tunggal, yakni buah yang terbentuk dari satu bunga dengan satu bakal buah, yang berisi satu biji atau lebih.
  • Buah ganda, yakni jika buah terbentuk dari satu bunga yang memiliki banyak bakal buah. Masing-masing bakal buah tumbuh menjadi buah tersendiri, lepas-lepas, namun akhirnya menjadi kumpulan buah yang nampak seperti satu buah. Contohnya adalah sirsak (Annona).
·         Buah majemuk, yakni jika buah terbentuk dari bunga majemuk. Dengan demikian buah ini berasal dari banyak bunga (dan banyak bakal buah), yang pada akhirnya seakan-akan menjadi satu buah saja. Contohnya adalah nanas (Ananas), bunga matahari (Helianthus).
Buah ada yang berdaging dan ada yang kering. Buah berdaging jika memiliki dinding buah tebal dan mengandung air, buah demikian disebut dengan buah buni. Buah kering ada yang kulit buahnya terpisah dengan kulit bijinya atau bersatu dengan kulit bijinya. Buah yang kulit bijinya bersatu dengan kulit buahnya dinamakan akenium.
Pemencaran Biji
Variasi dalam bentuk dan struktur buah terkait dengan upaya-upaya pemencaran biji. Pemencaran ini bisa terjadi dengan bantuan hewan, angin, aliran air, atau proses pecahnya buah yang sedemikian rupa sehingga melontarkan biji-bijinya sampai jauh.
·         Pemencaran oleh binatang (zookori)
Pemencaran oleh binatang biasa terjadi pada buah-buah yang memiliki bagian-bagian yang banyak mengandung gula atau bahan makanan lainnya. Musang, misalnya, menyukai buah-buah yang manis atau mengandung tepung dan minyak yang menghasilkan energi. Aneka macam buah, termasuk pepayakopi dan aren, dimakannya namun biji-bijinya tidak tercerna dalam perutnya. Biji-biji itu, setelah terbawa ke mana-mana dalam tubuh musang, akhirnya dikeluarkan bersama tinja, di tempat yang bisa jadi cukup jauh dari pohon asalnya. Demikian pula yang terjadi pada beberapa macam biji-biji rumput dan semak yang dimakan oleh ruminansia. Pemencaran seperti itu disebut endozoik.
Dari golongan burung, telah diketahui sejak lama bahwa burung cabe (Dicaeidae) memiliki keterkaitan yang erat dengan penyebaran beberapa jenis pasilan atau benalu (Loranthaceae); yang buah-buahnya menjadi makanan burung tersebut dan bijinya yang amat lengket terbawa pindah ke pohon-pohon lain.
Cara lain adalah apa yang disebut epizoik, yakni pemencaran dengan cara menempel di bagian luar tubuh binatang. Buah atau biji yang epizoik biasanya memiliki kait atau duri, agar mudah melekat dan terbawa pada rambut, kulit atau bagian badan binatang lainnya.
Misalnya pada buah-buah rumput jarum (Andropogon), sangketan (Achyranthes), pulutan (Urena) dan lain-lain.
·         Pemencaran oleh angin (anemokori)
Di kawasan hutan hujan tropika, pemencaran oleh angin merupakan cara yang efektif untuk menyebarkan buah dan biji, nomor dua setelah pemencaran oleh binatang. Tidak mengherankan jikaDipterocarpaceae, kebanyakan memiliki bentuk buah samara, menjadi salah satu suku pohon yang mendominasi tegakan hutan di Kalimantan dan Sumatra. Tumbuhan lain yang memanfaatkan angin, yang juga melimpah keberadaannya di hutan hujan ini, adalah jenis-jenis anggrek (Orchidaceae). Buah anggrek merupakan buah kotak yang memecah dengan celah-celah, untuk melepaskan biji-bijinya yang halus dan mudah diterbangkan angin.
Alih-alih buahnya, pada jenis-jenis tumbuhan tertentu adalah bijinya yang memiliki sayap atau alat melayang yang lain.
Biji-biji bersayap ini misalnya adalah biji bayur (Pterospermum), mahoni(Swietenia), atau tusam (Pinus). Biji kapas (Gossypium) dan kapok (Ceiba) memiliki serat-serat yang membantunya melayang bersama angin.
·         Pemencaran oleh air (hidrokori)
Buah-buah yang dipencarkan oleh air pada umumnya memiliki jaringan pengapung (seperti gabus) yang terisi udara atau jaringan yang tak basah oleh air. Misalnya adalah jaringan sabut pada buah kelapa (Cocos), ketapang (Terminalia) atau putat (Barringtonia).
Buah bakau (Rhizophora) telah berkecambah semasa masih melekat di batangnya (vivipar). Akar lembaga dan hipokotilnya tumbuh memanjang keluar dari buah dan menggantung di ujung ranting, hingga pada saatnya kecambah terlepas dan jatuh ke lumpur atau air di bawahnya. Kecambah yang jatuh ke lumpur mungkin langsung menancap dan seterusnya tumbuh di situ; namun yang jatuh ke air akan terapung dan bisa jadi terbawa arus air sungai atau laut hingga ke tempat yang baru, di mana kecambah itu tersangkut dan tumbuh menjadi pohon.

·         Pemencaran sendiri
Beberapa banyak macam buah, melemparkan sendiri biji-bijinya melalui berbagai mekanisme pecahnya dinding buah, yang sebagian besar berdasarkan pada peristiwa higroskopi atau turgesensi. 
Buah-buah kering yang memecah sendiri (dehiscens), di saat masak kehilangan kadar airnya, hingga pada lengas tertentu bagian-bagian yang terkait melenting secara tiba-tiba, memecah kampuh, dan melontarkan biji-biji di dalamnya ke kejauhan. Contohnya adalah buah para (Hevea), yang sering terdengar ‘meletus’ di kala hari panas. Demikian pula berbagai macam polong-polongan (Fabaceae), yang dapat melontarkan biji hingga beberapa puluhmeter jauhnya. Buah pacar air (Impatiens), karena sifat lentingnya, bahkan sering digunakan anak-anak untuk bermain.

ANATOMI BIJI
Biji merupakan sumber makanan yang penting bagi hewan dan manusia. Mempunyai biji merupakan salah satu ciri tumbuhan spermatophyta. Bagi tumbuhan spermatophyta biji ini merupakan alat perkembangbiakan yang utama. Karena biji mengandung calon tumbuhan baru atau lembaga. Biji berkembang dari bakal biji. Dengan dihasilkannya biji tumbuhan dapat mempertahankan jenisnya.
Biji yang terlihat sempurna tentunya mempunyai bagian – bagian tertentu. Namun dalam biji dikotil dan monokotil jumlah dan bagian – bagian tersebut tidak selalu sama.
Dalam proses perkembangbiakan biasanya biji mengalami proses yang dinamakan perkecambahan. Perkecambahan merupakan tahap awal perkembangan suatu tumbuhan, khususnya tumbuhan berbiji. Dalam tahap ini, embrio di dalam biji yang semula berada pada kondisi dorman mengalami sejumlah perubahan fisiologis yang menyebabkan ia berkembang menjadi tumbuhan muda. Tumbuhan muda ini dikenal sebagai kecambah.
1.Pengertian Biji
Biji merupakan bagian yang berasal dari bakal biji dan di dalamnya mengandung calon individu baru, yaitu lembaga. Lembaga akan terjadi setelah terjadi penyerbukan atau persarian yang diikuti oleh pembuahan.
Biji (bahasa Latin:semen) adalah bakal biji (ovulum) dari tumbuhan berbunga yang telah masak. Dari sudut pandang evolusi, biji merupakan embrio atau tumbuhan kecil yang termodifikasi sehingga dapat bertahan lebih lama pada kondisi kurang sesuai untuk pertumbuhan.

2.Bagian – Bagian Biji
a.Kulit Biji (Testa)
Kulit biji terletak paling luar. Testa berasal dari intergumen ovule yang mengalami modifikasi selama pembentukan biji berlangsung. Seluruh bagian intergumen dapat berperan dalam pembentukan kulit biji. Akan tetapi pada kebanyakan biji sebagian besar dari jaringan intergumen itu dihancurkan dan diserap oleh jaringan berkembang lain pada biji itu. Pada kulit biji beberapa tumbuhan dapat dijumpai suatu lapisan sel memanjang secara radial, yang menyerupai palisade tetapi tanpa ruang – ruang interseluler yang dinamakan sel malpighi. Lapisan itu terdiri atas selulosa, lignin dan juga kitin. Lapisan testa terdiri dari :
Sarkotesta        : Lapisan terluar
Sklerotesta       : Lapisan bagian tengah, tebal dan keras
Endotesta         : Lapisan terdalam, selaput tipis & berdaging
Ada bagian – bagian yang sering menyertai permukaan biji, yang pada masing – masing biji mempunyai bagian yang berbeda. Bagian – bagian itu adalah:

·         Sayap (Ala)
Merupakan pelebaran dari kulit luar sehingga membentuk sayap.
·         Bulu (Coma)
Merupakan penonjolan sel – sel kulit luar biji yang berupa rambut – rambut halus.

·         Salut Biji (Arillus)
Merupakan pertumbuhan dari tali pusar.
·         Salut Biji Semu (Arillodium)
Merupakan pertumbuhan di sekitar liang bakal biji (Microphyle).
·         Pusar Biji (Hilus)
Merupakan berkas perlekatan dengan tali pusar.
·         Liang Biji (Microphyle)
Liang kecil berkas masuknya buluh serbuk sari kedalam bakal biji pada peristiwa pembuahan. Tepi liang ini sering tumbuh menjadi badan berwarna keputih – putihan dan lunak yang disebut karankula.
·         Berkas – Berkas Pembuluh Pengangkutan (Chalaza)
Merupakan tempat pertemuan antara intergumen dengan nukleus.
·         Tulang Biji (Raphe)
Terusan tali pusar pada biji. Biasanya terdapat pada biji yang berasal dari bakal biji.

Pada biji – biji tertentu ada lapisan luar yang menjadi berlendir apabila terkena air. Lendir merupakan bagian berpektin pada lapisan dinding selnya yang akan mengembung bila terkena air dan akan memperlihatkan tekstur bergaris – garis. Lamela tengah tidak cukup elastik untuk menampung pembengkakan sehingga menjadi robek dan lapisan dinding luar yang berkutin tertutup kutikula, terangkat dan pecah – pecah. Dibawah epidermis terdapat 1 atau 2 lapisan sel. Dibawah lapisan sel – sel tersebut ada lapisan sel – sel sklerenkim memanjang yang bernoktah. Sklerenkim ini letaknya sejajar tegak lurus terhadap sel – sel parenkim. Sel parenkim ini mengandung banyak pati yang diserap oleh jaringan lain selama perkembangan biji itu.

b.Cadangan Makanan
Cadangan makanan merupakan kandungan yang ada dalam biji, baik dalam jumlah sedikit maupun banyak. Biji yang sedikit atau bahkan tidak ada Cadangan makanan disebut biji eskalbumin. Cadangan makanan berfungsi sebagai jaringan penyimpan.
Cadangan makanan memperkuat daya serap biji akan hara yang diperlukan tumbuhan dalam perkembangannya. Cadangan makanan bersel kecil berwarna putih agak kelabu, berdinding tipis, mengandung butir aleuron dan tetes minyak serta bahan cadangan tersimpan di dalam selnya.
Perkembangan cadangan makanan umunya dimulai sebelum perkembangan embrio. Cadangan makanan berkembang dari pembelahan mitosis inti endosperm yang dihasilkan dari peleburan salah satu gamet jantan dengan 2 inti kutub atau dengan inti sekunder.
Cadangan makanan tersebut kaya akan zat – zat makanan, yang disediakan bagi embrio yang sedang berkembang. Pada sebagian besar monokotil, cadangan makanan memupuk zat – zat makanan yang digunakan oleh biji setelah perkecambahan yang biasa disebut dengan endosperm. Pada banyak dikotil, cadangan makanan diangkut ke Cotyledon (keping biji) sebelum biji itu menyelesaikan perkembangannya dan sebagai akibatnya biji dewasa ini tidak mengandung endosperma.
Jaringan cadangan makanan pada biji yang bertumbuh dapat terjadi dari sel – sel berdinding tipis dengan vakuola besar – besar yang mengandung substansi cadangan.
Cadangan makanan mempunyai 2 tipe dinding sel, yaitu :
Dinding tipis : cadangan makanannya disimpan didalam selnya
Dinding tebal : cadangan makanannya disimpan didindingnya

c.Embrio
Embrio adalah suatu tanaman baru yang terjadi dari bersatunya gamet jantan dan betina pada suatu proses tumbuhan. Embrio merupakan sporofit muda, pada beberapa tumbuhan embrionya mempunyai kloroplas dan berwarna hijau. Embrio dikelilingi oleh kotiledon dan endosperma yang merupakan persediaan makanan. Calon tumbuhan baru yang akan tumbuh menjadi tumbuhan baru terdiri dari :
·         Radikula (akar lembaga atau calon akar)
Dikotil : berkembang menjadi akar tunggang
Monokotil : berkembang menjadi akar serabut
·         Cotyledon (daun lembaga)
Merupakan daun kecil yang terletak di bawah daun pertama kecambah
·         Cauliculus (batang lembaga)
Ruas batang di atas daun lembaga (internodium epicotylum)
Ruas batang di bawah daun lembaga (internodium hypocotylum)

3.Struktur Anatomi Biji
Keterangan struktur anatomi biji, yaitu :
a.Kulit biji          : terletak di bagian luar biji dan melapisi seluruh bagian biji.
b.Hipokotil         : bagian bawah aksis (pangkal) yang melekat pada kotiledon.
c.Radikula          : bagian terminal (ujung).
d.Epikotil           : bagian atas pangkal.
e.Plumula           : bagian ujung, yaitu pucuk dengan sepasang daun.
f.Kotiledon        : bagian cadangan makanan

4.Perkecambahan
Perkecambahan adalah peristiwa tumbuhnya embrio di dalam biji menjadi tanaman baru. Biji akan berkecambah jika berada dalam lingkungan yang sesuai. Perkecambahan biji bergantung pada imbibisi. Imbibisi merupakan penyerapan air oleh biji. Air yang berimbibisi menyebabkan biji mengembang, memecahkan kulit biji, dan memicu perubahan metabolic pada embrio yang menyebabkan biji tersebut melanjutkan pertumbuhannya. Munculnya plantula (tumbuhan kecil) dari dalam biji merupakan hasil pertumbuhan dan perkembangan embrio.
Fase perkecambahan diikuti pertumbuhan 3 jaringan meristem primer, yaitu :
a.Protodrem : lapisan terluar yang akan membentuk jaringan epidermis
b.Meristem dasar akan berkembang menjadi jaringan dasar yang mengisi lapisan korteks pada akar
diantara stele dan epidermis
c.Prokambium : lapisan dalam yang akan berkembang menjadi silinder pusat, yaitu floem dan xylem

Tahapan dan perkembangan
a.Pembelahan sel (cleavage) : Jumlah bertambah banyak
b.Spesialisasi : sel-sel yang sejenis berkelompok
c.Diferensiasi sel : Sel-sel mengalami perbedaan bentuk dan fungsi
d.Organogenesis sel : proses pembentukkan organ-organ tumbuhan
e.Morfogenesis sel : Organ satu dengan yang yang lain memiliki  kekhususan dalam bentuk dan fungsi


Berdasarkan letak kotiledonnya, perkecambahan dapat dibedakan menjadi 2, yaitu :
a.Perkecambahan Epigeal
Merupakan perkecambahan yang mengakibatkan kotiledon terangkat keatas tanah. Ruas batang di bawah daun lembaga (hipokotil) akan tumbuh lurus mengangkat kotiledon dan epikotil. Dengan demikian epikotil dan kotiledon terangkat ke atas permukaan tanah. Epikotil memunculkan helai daun pertamanya. Sedang kotiledon akan layu dan rontok karena cadangan makanannya telah habis oleh embrio yang berkecambah. Contohnya pada perkecambahan kacang hijau dan kacang tanah.

b.Perkecambahan Hypogeal
Merupakan perkecambahan yang mengakibatkan kotiledon tetap tertanam di bawah. Tumbuhnya epikotil memanjang sehingga plumula keluar menembus kulit biji dan muncul di atas permukaan tanah, sedangkan kotiledon tertinggal di dalam tanah. Contohnya pada perkecambahan kacang kapri dan jagung.
Urutan proses perkecambahan:
a.Masuknya air kedalam biji atau imbibisi
b.Aktifnya enzim-enzim untuk proses metabolisme, membongkar cadangan makanan dalam
kotiledon / endosperm
c.Hasil pembongkaran berupa sumber energi sebagai bahan penyusun komponen sel, dan pertumbuhan embrio.
d.Embrio tumbuh dan berkembang

Bagian – bagian perkecambahan :
a.Radikula
Adalah bakal calon akar yang tumbuh selama masa perkecambahan. Fungsinya untuk menyokong dan menyuplai bahan – bahan makanan untuk di proses pada bagian tanaman lainnya.
b.Kotiledon
Adalah daun kecil yang terletak di bawah daun pertama kecambah. Fungsinya untuk menyimpan cadangan makanan dan asimilasi.


c.Cauliculus
Adalah bakal calon batang yang tumbuh selama masa perkecambahan. Fungsinya sebagai bagian tanaman yang akan mengalami perkembangan ke atas untuk membentuk batang.
Hipokotil : Batang yang terletak di bagian bawah kotiledon
Epikotil : Batang yang terletak di bagian atas kotiledon

d.Testa
Adalah bagian yang melindungi bagian dalam biji.

DAFTAR PUSTAKA

Denisa, A.J and MacDaniels, L.H.,  1972. An Introduction To Plant Anatomy Second Edition. Tata Mcgraw Hill Publishing Company Limitid, New Delhi.
Estiti, B. Hidayat. 1920. Anatomi Tumbuhan Berbiji. Bandung: ITB.
Mauseth, James D. (8 Juli 2003). Botany: an introduction to plant biology. Boston: Jones and Bartlett Publishers. hlm. 258. ISBN 978-0-7637-2134-3.
Mulyani, sri. 2006. Anatomi Tumbuhan. Yogyakarta: kanisius.
Napitupulu, J.A., 2009. Anatomi Tumbuhan. USU Press, Medan.
Tjitrosoepomo, G. 2001. Morfologi Tumbuhan. Gadjah Mada University Press,
Yogyakarta.
Tjitrosomo, S.S., 1983. Botani Umum I. Angkasa, Bandung.
Read more ...
Designed By Jurnalusu2016